Two-component Poisson mixture regression modelling of count data with bivariate random effects
نویسندگان
چکیده
Two-component Poisson mixture regression is typically used to model heterogeneous count outcomes that arise from two underlying sub-populations. Furthermore, a random component can be incorporated into the linear predictor to account for the clustering data structure. However, when including random effects in both components of the mixture model, the two random effects are often assumed to be independent for simplicity. A two-component Poisson mixture regression model with bivariate random effects is proposed to deal with the correlated situation. A restricted maximum quasi-likelihood estimation procedure is provided to obtain the parameter estimates of the model. A simulation study shows both fixed effects and variance component estimates perform well under different conditions. An application to childhood gastroenteritis data demonstrates the usefulness of the proposed methodology, and suggests that neglecting the inherent correlation between random effects may lead to incorrect inferences concerning the count outcomes.
منابع مشابه
Estimation of Count Data using Bivariate Negative Binomial Regression Models
Abstract Negative binomial regression model (NBR) is a popular approach for modeling overdispersed count data with covariates. Several parameterizations have been performed for NBR, and the two well-known models, negative binomial-1 regression model (NBR-1) and negative binomial-2 regression model (NBR-2), have been applied. Another parameterization of NBR is negative binomial-P regression mode...
متن کاملA finite mixture of bivariate Poisson regression models with an application to insurance ratemaking
Bivariate Poisson regression models for ratemaking in car insurance has been previously used. They included zero-inflated models to account for the excess of zeros and the overdispersion in the data set. These models are now revisited in order to consider alternatives. A 2-finite mixture of bivariate Poisson regression models is used to demonstrate that the overdispersion in the data requires m...
متن کاملBayesian paradigm for analysing count data in longitudina studies using Poisson-generalized log-gamma model
In analyzing longitudinal data with counted responses, normal distribution is usually used for distribution of the random efffects. However, in some applications random effects may not be normally distributed. Misspecification of this distribution may cause reduction of efficiency of estimators. In this paper, a generalized log-gamma distribution is used for the random effects which includes th...
متن کاملA framework for modelling overdispersed count data, including the Poisson-shifted generalized inverse Gaussian distribution
A variety of methods of modelling overdispersed count data are compared. The methods are classified into threemain categories. The first category are ad hoc methods (i.e. pseudolikelihood, (extended) quasi-likelihood, double exponential family distributions). The second category are discretized continuous distributions and the third category are observational level random effects models (i.e. m...
متن کاملMarginalized mixture models for count data from multiple source populations
Mixture distributions provide flexibility in modeling data collected from populations having unexplained heterogeneity. While interpretations of regression parameters from traditional finite mixture models are specific to unobserved subpopulations or latent classes, investigators are often interested in making inferences about the marginal mean of a count variable in the overall population. Rec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Mathematical and Computer Modelling
دوره 46 شماره
صفحات -
تاریخ انتشار 2007